Linear Algebra II

08/04/2013, Monday, 9:00-12:00

The exam consists of 5 problems. At each problem, the points for each subproblem are indicated (10 pts gratis). You are **NOT** allowed to use **any kind of calculators**. Good luck!

1 Inner product spaces and Gram-Schmidt process 3+6+(6+3)=18 pts

- (a) Let v_1 , v_2 , and v_3 be nonzero vectors of an inner product space V. Show that v_1 , v_2 , and v_3 are linearly independent if $\{v_1, v_2, v_3\}$ is an orthogonal set of vectors.
- (b) Consider the vector space P_4 . Let

$$\langle p, q \rangle = p_0 q_0 + p_1 q_1 + p_2 q_2 + p_3 q_3$$

where $p(x) = p_0 + p_1 x + p_2 x^2 + p_3 x^3$ and $q(x) = q_0 + q_1 x + q_2 x^2 + q_3 x^3$. Show that $\langle \cdot, \cdot \rangle$ is an inner product on P_4 .

- (c) Consider the vector space P_4 . Let S be the subspace spanned by the vectors 1, 1+x, and $(1+x)^2$.
 - (i) By applying the Gram-Schmidt process, find an orthonormal basis for the subspace S.
 - (ii) Find the vector p in S that is closest to the vector $(1+x)^3$.

2 Eigenvalues and diagonalization

$$4 + 4 + (2 + 8) = 18 \text{ pts}$$

- (a) Let $M \in \mathbb{C}^{m \times m}$ be of the form M = A + iB where $A, B \in \mathbb{R}^{m \times m}$. Show that M is Hermitian if and only if $A = A^T$ and $B = -B^T$.
- (b) Let $M \in \mathbb{R}^{m \times m}$ be a matrix with $M = \alpha M^T$ for some real number α . Show that M is unitarily diagonalizable.
- (c) Consider the matrix

$$M = \begin{bmatrix} 3 & -2 & 2 \\ -2 & 0 & -1 \\ 2 & -1 & 0 \end{bmatrix}.$$

- (i) Show that the eigenvalues are -1, -1 and 5.
- (ii) Find an orthogonal matrix U that diagonalizes M.

- (a) Let $M \in \mathbb{R}^{m \times m}$ be a symmetric matrix. Show that M^2 is positive definite if and only if M is nonsingular.
- (b) Check if the matrix

$$M = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{bmatrix}$$

is positive definite or not.

4 Singular value decomposition

13 + 5 = 18 pts

Consider the matrix

$$M = \begin{bmatrix} a & -b & 0 \\ b & a & -b \\ 0 & b & a \end{bmatrix}$$

where a and b are positive real numbers.

- (a) Find a singular value decomposition of M.
- (b) Find the best rank 2 approximation of M.

5 Cayley-Hamilton theorem and Jordan canonical form

6 + 12 = 18 pts

Consider the matrix

$$M = \begin{bmatrix} 1 & a & b \\ 0 & 1 & a \\ 0 & 0 & 1 \end{bmatrix}$$

where a and b are real numbers with $a \neq 0$.

- (a) By using Cayley-Hamilton theorem, show that $(M^2 I)^{999} = 0$.
- (b) Put the matrix M into Jordan canonical form.